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Abstract The coupled-cluster method of quantum m y - b o d y  theory is applied to ID and m 
spin-f systems with nearest-neighbour and next-nearest-neighbour isotropic exchange. Several 
simple approximation schemes based on a N k l  model state are investigated and E found to 
give satisfactory results in the antiferromagnetic regime. Resultr are given for the ground-state 
energy, the order parameter and the subla!lice magnetization. We obtain evidence of a phase 
transition. 

1. Introduction 

In a recent series of papers (Bishop et ai 1991a, b, 1992% b) the coupled-cluster method 
(CCM) has been established as an effective method of treating quantum spin systems, 
following the initial work of Roger and Hetherington (1990a. b). Two important features of 
the method are firstly, that it is an ab initio method and yet is capable of giving evidence 
of zero-temperature phase changes as the parameters of the Hamiltonian are varied, and 
secondly, that it gives numerical results for the ground-state energy per spin and other 
quantities, which are good at a low order of approximation and can be systematically 
improved. 

In this paper we apply the method to two spin-; quantum spin systems with isotropic 
nearest- and next-nearest-neighbour exchange. In ID the model is the so-called Majumdar- 
Ghosh (MG) Hamiltonian (Majumdar and Ghosh 1969a, b; see also Haldane 1982), given 
hY 

I I 

where the sum over 1 is over all N atoms with periodic boundary conditions. 
In ZD we consider a square lattice and the Hamiltonian is 

where the sum over I is over all N atoms with periodic boundary conditions. The sum over 
p is over the four nearest neighbours along the edges of the squares, while that over 6 is 
over the four next-nearest neighbours along the diagonals of the squares. 

We shall also use the notation J I  = cosw and JZ = sinw, and put oc = J z / J I  = tanw. 
The models become isotropic Heisenberg models when Jz = 0, and become two decoupled 
Heisenberg models when 31 = 0. 
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For the ID MO system exact results are available at both these points using the Bethe 
ansa2 (Bethe 1931. Orbach 1958, Yang and Yang 196& b), for either sign of the exchange 
integrals. In addition the ground state is known exactly at the point J2 = J1 with 51 z 0 
(w = 01 =tan-’(%), the MG point), where it has a dimerized form. 

The zero-temperature phase diagram of the MG model is shown in figure 1. The three 
regimes are ferromagnetic (0, -IT < w < -n/2), antiferromagnetic (AF) (-a/2 < w < SI) 
and frustrated (01 < w .c 0z), where 0% = tan-’[-$), the MO point being the boundary 
between the AF and frushted regimes (see Tonegawa and Harada 1987). There is also a 
phase change within the AF regime from a gapless ‘spin-fluid’ regime to a ‘dimer’ regime 
with a non-zero gap. The position of this phase change is given by Okamoto and Nomura 
(1992) as (Y = 0.2411. At the present level of approximation the CCM cannot identify this 
more subtle phase change with any reliability. 

J2 

‘Fmsfrated egime 

Figure 1. The zemtemperanue phase diagram for h e  ID model. 

The classical ground state in the frustrated regime (which has a slightly different 
boundary with the AF regime, namely w = tan-’(:)) is a spiral whose real-space periodicity 
increases monotonically from two at the AF boundary to infinity at the ferromagnetic 
boundary. There is evidence of similar behaviour in the quantum system from study of 
the correlation functions (Tonegawa and Harada 1987). In this paper we shall present 
results for the AF regime. 

The 2D Hamiltonian has attracted a great deal of interest recently because it is believed 
to demibe the antiferromagnetic undoped cuprate systems that are precursors of one of 
the principal classes of high-% superconductors (see hbnousakis 1991 and Birgeneau 1990 
for reviews of these materials). Numerical studies have been carried out by Dagotto and 
Moreo (1989a), reviewed by Dagotto (1991). and we shall compare our results with these 
in sections 3 and 4. 
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The zero-temperature phase diagram is believed to be similar to the ID case, although 
there are very few exactly known features in ZD. The boundaries of the ferromagnetic regime 
are at o = -n/2 and o = tan-'(-;). The boundary between the AP and frustrated regimes 
is not known exactly but probably lies fairly close to the classical value, o = tan-'($) 
(Chandra and Doucot 1988). The classical ground state in the frustrated regime consists 
of two interpenetrating N&l-like sublattices with arbitrary angle between the sublattice 
magnetizations. Quantum mechanically the arbitrary angle would obviously be correct at 
51 = 0 but for non-zero values a parallel or antiparallel (collinear) shucture seems likely 
(Dagotto and Moreo 1989a, b). Other recent studies of this regime include those of Xu 
and ring (1990) and Chubukov and Jolicoeur (1991). Again, bowever, our results apply 
primarily to the AP rather than the frustrated regime. 

In this paper we shall frequently refer to the article by Bishop etal (1991b), in which 
a detailed description of the method is given, and this will be denoted as I. 

2. Approximation schemes 

We begin by selecting our model or reference state, I@), which we shall take as the usual 
two-sublattice N&l state. A notional rotation of 180" on one sublattice is performed so that 
the model state may be referred to as having all spins pointing down. This model state is 
clearly particularly suitable for the AP regime. Although in principle the CCM is valid for 
any model state, a choice physically unrelated to the hue ground state leads to results that 
converge too slowly to be useful. Consequently we do not expect the CCM based on this 
model state to work well in the frustrated regime. 

We shall work with Pauli spin operators U;, related to the spin angular momentum 
operators in the usual way: U: = By, CY = x .  y ,  z .  Defining raising or lowering operators 
U: = ;(U: &iu/) for index i on the 'down' sublattice and U,? = $(-U; f iu;) for index 
j on the 'up' sublattice, then = 0 for index 1 on either sublattice, while u:l@) is a 
state with the lth spin reversed with respect to the model state (and see I for further details). 

The ID Hamiltonian (1.1) becomes 

(2.1) 

while in ZD we obtain from (1.2) 

In the CCM the true ground state is written 

I*) = esI@). 

The CCM correlation operator S is constructed entirely out of creation operators with respect 
to the model state, i.e. out of a sum of terms containing all possible C:, where CT is a 
product of creation operators f" {U:} consistent with the conserved quantities. For the 
ground state we require that s+ Er sf = 0. Any particular approximation consists of 
selecting a subset of these terms. 

We shall use the following approximation schemes, all of which were described in I. 
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(i) Full SUEZ. In this scheme S includes aU possible products of two spin-flip operators. 
In ID this has the form 

where i runs over all N sites and r is a positive or negative odd integer with 1r1 < N / 2 .  
This ensures that there is one flip on each sublattice. By symmetry b-, = br. In 20 i and 
r become two component vectors and b, satisfies the square lattice symmetry. 

(ii) sUB2.z. This is a subset of full SUB2 in which all b, are set to zero except the term 
involving nearest neighbours, whose coefficient is denoted 61 in both ID and 2D. 

(iii) ,!.SUB$. This contains all the configurations obtained by flipping spins within a 
'locale' of four adjacent spins and is defined differently in ID and 2D. 

In ID the 'locale' is a line of four adjacent spins so L S ~  consists of the b+1 and b*3 
terms from full SUEZ together with a term involving four flips on adjacent sites, leading to 

S = bl ZO:O~',, + b 3 x o ; b A 3  t g 4 x ~ : u i ' , ~ a ~ p & .  (2.4) 

In ZD the 'locale' is a square block of four adjacent spins so L S U B ~  consists of the bl 
terms of sUB2-2 together with a term in which all four adjacent spins in a single square are 
flipped, leading to 

i i i 

where p1, and pz  are vectors connecting adjacent sites in the positive x and y directions 
respectively. 

We denote the similarity transform with respect to S of any operator by; and for each 
scheme we calculate the transform of the spin operators, for example 

An important feature of the c m  is that the expansion of this expression in terms of nested 
commutators will always terminate after a finite (small) number of terms. Using these 
the transformed Hamiltonian can be obtained. The ground-state Schrodinger equation 
HIY) = EJY) can then be written 

Operating on this equation with (Ol yields the following equation for the ground-state 
energy in terms of the coefficients in S: 

E , / N  = (-JIK + Jdz /8  (2.7) 

where K = 1 + 261 and z is the number of nearest neighbours. This equation is valid in 
both 1D and 2D for aU the approximation schemes. Its simple form i s  a consequence of the 
localized form of the interactions in (1.1) and (1.2). 

To find bl we obtain a set of coupled non-linear equations for the coefficients retained 
in each of the approximation schemes by operating on (2.6) with (@IC,, where C, is the 
Hermitian conjugate of one of the shngs of creation operators (combinations of U,?) present 
in S. 
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3. The coupled non-linear equations 

After carrying out the procedure described above for S given by (2.3). we operate on (2.6) 
with xi u;ucZ or xi u;u& in ID or XI respectively. This yields the following full SUBZ 
equations in ID: 

with p = f l ,  6 = f 2  and t (like r) any positive or negative odd integer. The solution of 
(3.1) is given in section 4. 

In U) the full SUBZ scheme gives 

A S(r - p) - Bb, - % br+s + bp+&J8 = 0. (3.2) 
P 6 8 P  

Here p is a nearest-neighbour vector and 6 a next-nearest-neighbour vector. while s, like 
r ,  is any vector connecting sites on different sublattim. The solution of (3.2) is also given 
in the next section. 

For both equations 

01=51/51 =tan0 A = l + 2 b 1 + 2 b :  B = ~ z ( R - u ) .  

For SUB2-2 the single equation in 1D is 

- 1 +2bi+3bf  - &bl = 0 

leading directly to 

E g / N  = - .Ii /12[1- 01 + 2J-l 
while in 2D the single SUB22 equation is 

- 1 +6br +5b: -401bl = 0 

leading directly to 

Eg/N = 5i/10[1 +U - 2 J k Z  - 1% + 141. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

In both (3.4) and (3.6) the positive sign of the square root has been taken to give 
agreement with the results of I where it was shown to be necessary to obtain the correct 
result in the king l i t .  The results are shown in figures 2 and 3. 

For the LSUB4 approximation scheme in ID, a similar procedure results in the three 
coupled equations 

- 1 + 2bi + 3b: - 261b3 - 2b: - 2g4 - Za(b1- b3) = 0 

4b3 - b: + 4blb3 - g4 + %(bi - 2b3) = 0 

(3.7a) 

(3.7b) 

(3.7c) (1 + 4bi + b3)g4 - b: - 2bib3 + 2bi b: - &x4 = 0. 
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Figure 2. me gmund-swre energy per spin as a function of @ in ID. We show the results of the 
full SUBZ. the SUBM and the UIW approximation schemes. Also shown are the 'exact' results 
b a d  on short-ehain calcolations exhapolaled to N = m. Spin-wave Iheory (sw) results are 
shown for comparison. 

0.1 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 

-0.8 

-0.9 

W 

4x4 a r m  lanice 

-7rR -t14 0 m14 rrR 
W 

Figure 3. The gmund-state energy per spin as a function of w in 1 ~ .  Also shown me the 
numerical results for a 4 x 4 lattice. 
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In 2~ the two equations are 

(3.8a) 

(3.8b) 

In both cases a numerical solution of these equations can be obtained by a simple 
iterative technique and the resulting value of bI used in (2.7). These results are also plotted 
in figures 2 and 3, and discussed in the next section. 

For comparison purposes, accurate values for the true ground-state energy in the AF 
regime in ID were obtained by first directly diagonalizing short chains with N < 14. Then 
plots of E,/N against 1 / N 2  were extrapolated to N + bo to produce the results labelled 
'exact' in figure 2. They are indistinguishable visually on this figure from the exact results 
where these are known. We see that even the very simple SUBZ-2 approximation scheme 
gives much better results than the classical approximation while the L S U B ~  scheme represents 
a further significant improvement. 

For 2~ we compare our results with Lanczos calculations on a 4 x 4 lattice. Where 
comparable, these agree exactly with the values given by Dagotto and Moreo (1989a). 

4. Solution of the full sm2 equations 

The full SUBZ equations, (3.1) and (3.2), can be solved using Fourier hansforms as described 
in appendix A of I. The result in ID is 

with 

G(4) = K -ks in*(q)  D(q) = G2(c,, - Acos*(q). (4.2) 

A and (Y are defined in section 3 and K in section 2. 
In 2D 

with 

As in section 3, we choose the sign of the square mots for consistency with I, which 
in turn was chosen to be correct in the king l i t .  The choice r = 1 in ID or r = p in 
2D in these equations gives an integral equation for bl that can be solved numerically. The 
resulting ground-state energy given by (2.7) is also shown in figures 2 and 3. 
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Over much of the AF regime the results for the ground-state energy per spin in the full 
SUB2 scheme do not differ greatly from those obtained using the SUBz-2 scheme. However, 
one interesting aspect of the full SUBZ approximation scheme, as noted in I, is the possible 
existence of a terminating point. Clearly (4.1) or (4.3) has no real solution if D becomes 
negative for some value of q or q. 

In ID we h d  that this does occur, but the value of q at which D is a minimum is not 
at 0 or K, but at q = qo given by 

cos(2qo) = 1 - K/OL + A/(4u2). 

Taking D = 0 at q = qo gives 

A-  SKU + 1 6 2  = O  

(4.8) 

(4.9) 

and furthermore f i  can be evaluated exactly to give a term linear in cos(2q), which 
enables the integral to be evaluated analytically. This requires some care, and the range of 
integration needs to be divided into two at q = qo to ensure that f i  always bas the sign 
given in (4.1). We find the exact self-consistency expression for bl at this point is 

bl = K - CY - 2a sin(2qO)lx + ol(4qo - x )  cos(Zqo)/z. (4.10) 

Solving the simultaneous equations (4.9) and (4.10) we obtain the critical value of o 
beyond which there is no real solution of (4.1) as o, = 0.7660. The corresponding value of 
the ground-state energy is E,/N = -0.2495. This critical or terminating point is marked 
T in figure 2. 

Turning now to 2D we find D(q)  becomes zero at p = (0, fk) or (in, 0). In either 
case we find bl = 0.2471 and UJ = 0.6416, E,,” = -0.299. This point is marked T in 
figure 3. 

We believe (see the discussion in I) that each of these terminating points represents a 
phase change to a phase with a fundamentally different ground state from the model state. 
For the Hamiltonians described by (1.1) and (1.2) this would probably correspond to a 
change from an AF to a frustrated phase. In ID the value o, at which this phase change 
takes place is clearly not accurate at this level of approximation. since the true value is 
believed to be o = tan-’(;) = 0.4636, and in ZD the accuracy is probably not significantly 
better. Nevertheless to obtain a phase change in an ab initio calculation of this type is 
encouraging. 

If we compare the CCM results for the dfierent approximation schemes with the SWT 
results, we see excellent agreement fo ro  5 0 between all the methods. Foro 2 0 the results 
of the different methods diverge. The cchl has the potential for systematic improvement as 
was shown by Bishop er ai (1991b) and we would expect that successive approximations of 
the LSmn type would be suitable for obtaining accurate values of the ground-state energy 
per spin over the whole of the AF regime. 

5. Correlation functions and maguetization 

To calculate an expectation value we need the bra ground state as well as the ket ground 
state. It is important to note that the CCM does not give a unitary transformation between the 
model ground state and the conshucted approximate hue ground state. For this reason the 
bra state is not the Hermitian conjugate of the ket state and bas to be constructed separately. 
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However, a linear rather than exponential transformation is adequate, and is known as the 
n o d  CCM (NCCM). An exponential transformation is possible, known as the extended CCM 
(ECCM). as described by Arponen et a1 (1987), but will not be used bere. 

The NCCM form of the bra state is 

( @ I =  (5.1) 

where the new operator 3 is constructed from a linear combination of the C, destruction 
operators, consistent with the conserved quantities. We shall use the full suBz version given 
in 1D by 

where 1 < I < N is an integer labelling the lattice sites and r is any positive or negative 
odd integer, corresponding to the difference between any two sites on opposite sublattices. 
The coupled linear equations for the coefficients of this operator are 

where p = f l ,  s is also a positive or negative odd integer, and the b, are the solutions of 
(4.1). The constant K1 is defined by 

KI = 1 + 2 K i l  - 4 8  (5.4) 

with 

8 = C & b ,  

In ZD the equations are rather similar. We write 

s = 1 + ; c C6+T;q& 
t r  

(5.5) 

where the 1 are the position vectors of the lattice sites and T connects any two sites on 
opposite sublattices. The coupled linear equations for the coefficients of this operator are 

K I  - 8& + 2c z b p 6 p + s + r  + 2cr c(6, - br+,s) = 0 (5.7) 
P P S  6 

where p is a nearest-neighbour vector and 6 a next-nearest-neighbour vector, as before, and 
the b, are the solutions of (4.3). The constant K1 is defined by (5.4) and 

(5.8) 

These equations can be solved by Fourier transformation. Details are given only for ID, 
the ZD equations being analogous in the same way as in the last section. We find 

(5.9) 
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and the constant E can also be expressed as an integral as shown in appendix B of I as 

D J J FameN and J B Parkinson 

Hence, using (5.4) and (5.9) with r = 1 we obtain 

These equations can be solved numerically. 
Using the bra state we have calculated the following quantities: 

(i) the order parameter p, defined by 

jc  = lim 
r+m 

and 
(ii) the sublattice magnetization M', defined by 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

As discussed in I we taker odd in (S. 12) and obtain the results p = I -4% and Mz = 1-23, 
The fact that (M')2 is not equd to p in any given level of approximation is another 
consequence of the non-unitary nature of the CCM. 

Figure 4. The order parameter p. the sublattice magnetization M' and the squm of M' as 
fuctions of o. in both ID and w. 
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Our ID results for these quantities are shown in figure 4. The exact values for p and 
M2 are believed to be zero in the AP regime, so our results are clearly not correct. Note, 
however, the infinite slope of the curves at w = -n/2, which would be consistent with a 
sudden change to zero at this point. Also the results are considerably better than those of 
AF S W ,  which predicts divergences in both over the whole regime except at w = -n/2 
where Mz -+ 1. 

The results for ZD are also shown in figure 4. The essential features a e  that the values 
of M' lie higher than in ID and that the gradient at the ferromagnetic boundary is not 
infinite. In ZD the magnetization is believed not to be zero over the whole of the AP regime. 
Although our results are not accurate enough to confirm this, these features do give it some 
support It would be interesting to by better approximations for the bra state to shed further 
light on this question. 

6. Conclusions 

Of the three main T = 0 phases of the quantum spin systems given by (1.1) and (l.Z), the 
ferromagnetic has the simplest ground state, the AF the next simplest and the frustrated the 
most complicated. We have shown how the CCM based on a N6el model state can produce 
useful results for the AF phase, including evidence of a phase transition at a critical value 
of w, probably to the frustrated phase. At the present stage in the application of CCM to 
quantum spin systems, we can obtain reasonably accurate numerical results for the ground- 
state energy, and results for the order parameter and the sublattice magnetization better than 
those from SWT. 

The behaviour of the 1D model in the vicinity of the transition between the AF and 
frustrated phases is known to be complex, with gapless and non-zero gap regimes as well 
as regimes with different spatial periodicity (Tonegawa and Harada 1987). Higher-order 
approximation schemes involving many extra terms in S would be necessary in order to 
obtain useful results on the subtle differences between these phases. Nevertheless this is 
possible in principle for the CCM and in practice would probably involve use of computer 
algebra packages to generate the coupled non-linear equations. 

A much more difficult problem is the frustrated phase. The numerical results on short 
chains are in agreement with the classical picture of a spiral ground state in ID whose 
periodicity in real space varies with o. To apply the CCM requires both a suitable model 
state and a complete set of creation operators from that state, and these have not been 
considered in this paper. 
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